A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells

نویسندگان

  • Doo Yeon Kwon
  • Jin Seon Kwon
  • Seung Hun Park
  • Ji Hun Park
  • So Hee Jang
  • Xiang Yun Yin
  • Jeong-Ho Yun
  • Jae Ho Kim
  • Byoung Hyun Min
  • Jun Hee Lee
  • Wan-Doo Kim
  • Moon Suk Kim
چکیده

A computer-designed, solvent-free scaffold offer several potential advantages such as ease of customized manufacture and in vivo safety. In this work, we firstly used a computer-designed, solvent-free scaffold and human dental pulp stem cells (hDPSCs) to regenerate neo-bone within cranial bone defects. The hDPSCs expressed mesenchymal stem cell markers and served as an abundant source of stem cells with a high proliferation rate. In addition, hDPSCs showed a phenotype of differentiated osteoblasts in the presence of osteogenic factors (OF). We used solid freeform fabrication (SFF) with biodegradable polyesters (MPEG-(PLLA-co-PGA-co-PCL) (PLGC)) to fabricate a computer-designed scaffold. The SFF technology gave quick and reproducible results. To assess bone tissue engineering in vivo, the computer-designed, circular PLGC scaffold was implanted into a full-thickness cranial bone defect and monitored by micro-computed tomography (CT) and histology of the in vivo tissue-engineered bone. Neo-bone formation of more than 50% in both micro-CT and histology tests was observed at only PLGC scaffold with hDPSCs/OF. Furthermore, the PLGC scaffold gradually degraded, as evidenced by the fluorescent-labeled PLGC scaffold, which provides information to tract biodegradation of implanted PLGC scaffold. In conclusion, we confirmed neo-bone formation within a cranial bone defect using hDPSCs and a computer-designed PLGC scaffold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

سلول‌های بنیادین پالپ دندان‌های شیری انسان، تاریخچه و انواع روش‌های استخراج سلول

  Background and Aims: In the last decade, several studies have reported the isolation of stem cell population from different dental sources, while their mesenchymal nature is still controversial. The aim of this study was to introduce the isolating methods for stem cells from human dental pulp and to determine their mesenchymal nature before differentiation.   Material and methods: One of the ...

متن کامل

Combined Hydroxyapatite Scaffold and Stem Cell from Human Exfoliated Deciduous Teeth Modulating Alveolar Bone Regeneration via Regulating Receptor Activator of Nuclear Factor-Κb and Osteoprotegerin System

Background: Tissue engineering using Stem cell from Human Exfoliated Deciduous Teeth (SHED) and a natural biomaterials biomaterial scaffold has become a promising therapy for the alveolar bone defect. The aim of this study was to analyze the Osteoprotegerin (OPG) and Receptor Activator of NF-Κb ligand (RANKL) expression after the application of Hydroxyapatite scaffold and SHED.Methods: A labora...

متن کامل

Potential use of Dental Pulp Stem Cell in Laboratory Studies and Clinical Trials

Stem cell-based therapy has great potential in treating health conditions including cardiovascular, autoimmune, type I diabetes, neurodegenerative and bone and cartilage diseases also in spinal cord injuries, malformations and cancer. In addition to their potential use to treat systemic diseases, stem cell-based therapy also provides a powerful tool to treat oral and dental diseases such as cra...

متن کامل

Stem Cells of the Dental Pulp

 Dental Pulp Stem Cells (DPSCs) can be found within the cell rich zone of dental pulp. These stem cells, under specific stimuli, differentiate into many cell types which have wide therapeutic applications.   The dental stem cells are derived from both deciduous and permanent teeth. The viable dental stem cells are very simple to collect, without any mortality and morbidity. Dental pulp stem c...

متن کامل

Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs

Dental Caries affects approximately 90% of the world's population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs) have been shown to be an excellent source for pul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015